Secret Of Athleticism Pdf Free Free
Download File === https://urlgoal.com/2sXyKu
With the Sports Performance Bible, you will learn everything you need to know to not only get your athletes as strong and powerful as possible, but improve their athleticism and performance in their individual sports.
Some of the most prevalent and widely sought-after scholarships offered by universities are athletic scholarships. Athletic scholarships allow students to attend universities through the merit of their sport or athleticism. Many high school athletes are willing to go to great lengths to earn an athletic scholarship, from training year-round, ensuring they are in top health for their sport, to talking to multiple schools to assess recruitment opportunities.
Many sports photographers are freelancers, while others work for publications. Some photographers will cover many sporting events, from the Olympics to a Formula One Grand Prix. Other photographers dedicate themselves to one particular sport. And that could be anything from football to surfing.
Stamina and recovery are key to players in many sports, and conditioned breathing is critical when activities feature quick bursts of energy followed by short recovery times. Adaptive conditioning uses controlled, stress-free air pressure that mimics the demands of sports activity, ensuring the best in-game performance.
Collectively, these results indicate that increasing dietary protein can promote favorable adaptations in body composition through the promotion of fat-free mass accretion when combined with a hyperenergetic diet and a heavy resistance training program and can also promote the loss of fat mass when higher intakes of daily protein (2-3× the RDA) are combined with an exercise program and a hypoenergetic diet.
A review by Bosse and Dixon [84] critically summarized the available literature on protein supplementation during resistance exercise and hypothesized that protein intake may need to increase by as much as 59% above baseline levels for significant changes in fat-free mass to occur. Finally, it should be noted that for many athletes, consuming a post- or pre-workout protein-containing meal represents a feeding opportunity with little downside, since there is no benefit from not consuming protein pre- and/or post-exercise. In other words, not consuming protein-containing foods/supplements post-exercise is a strategy that provides no benefit whatsoever. Thus, the most practical recommendation is to have athletes consume a meal during the post-workout (or pre-workout) time period since it may either help or have a neutral effect.
Several studies, but not all, [148] have indicated that EAAs alone stimulate protein synthesis in the same magnitude as a whole protein with the same EAA content [98]. For example, Borsheim et al. [52] found that 6 g of EAAs stimulated protein synthesis twice as much as a mixture of 3 g of NEAAs combined with 3 g of EAAs. Moreover, Paddon-Jones and colleagues [96] found that a 180-cal supplement containing 15 g of EAAs stimulated greater rates of protein synthesis than an 850-cal meal with the same EAA content from a whole protein source. While important, the impact of a larger meal on changes in circulation and the subsequent delivery of the relevant amino acids to the muscle might operate as important considerations when interpreting this data. In contrast, Katsanos and colleagues [148] had 15 elderly subjects consume either 15 g of whey protein or individual doses of the essential and nonessential amino acids that were identical to what is found in a 15-g whey protein dose on separate occasions. Whey protein ingestion significantly increased leg phenylalanine balance, an index of muscle protein accrual, while EAA and NEAA ingestion exerted no significant impact on leg phenylalanine balance. This study, and the results reported by others [149] have led to the suggestion that an approximate 10 g dose of EAAs might serve as an optimal dose to maximally stimulate MPS and that intact protein feedings of appropriate amounts (as opposed to free amino acids) to elderly individuals may stimulate greater improvements in leg muscle protein accrual.
Based on this research, scientists have also attempted to determine which of the EAAs are primarily responsible for modulating protein balance. The three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine are unique among the EAAs for their roles in protein metabolism [150], neural function [151,152,153], and blood glucose and insulin regulation [154]. Additionally, enzymes responsible for the degradation of BCAAs operate in a rate-limiting fashion and are found in low levels in splanchnic tissues [155]. Thus, orally ingested BCAAs appear rapidly in the bloodstream and expose muscle to high concentrations ultimately making them key components of skeletal MPS [156]. Furthermore, Wilson and colleagues [157] have recently demonstrated, in an animal model, that leucine ingestion (alone and with carbohydrate) consumed between meals (135 min post-consumption) extends protein synthesis by increasing the energy status of the muscle fiber. Multiple human studies have supported the contention that leucine drives protein synthesis [158, 159]. Moreover, this response may occur in a dose-dependent fashion, plateauing at approximately two g at rest [31, 157], and increasing up to 3.5 g when ingestion occurs after completion of a 60-min bout of moderate intensity cycling [159]. However, it is important to realize that the duration of protein synthesis after resistance exercise appears to be limited by both the signal (leucine concentrations), ATP status, as well as the availability of substrate (i.e., additional EAAs found in a whole protein source) [160]. As such, increasing leucine concentration may stimulate increases in muscle protein, but a higher total dose of all EAAs (as free form amino acids or intact protein sources) seems to be most suited for sustaining the increased rates of MPS [160].
Egg protein is often thought of as an ideal protein because its amino acid profile has been used as the standard for comparing other dietary proteins [168]. Due to their excellent digestibility and amino acid content, eggs are an excellent source of protein for athletes. While the consumption of eggs has been criticized due to their cholesterol content, a growing body of evidence demonstrates the lack of a relationship between egg consumption and coronary heart disease, making egg-based products more appealing [176]. One large egg has 75 kcal and 6 g of protein, but only 1.5 g of saturated fat while one large egg white has 16 kcal with 3.5 g of protein and is fat-free. Research using eggs as the protein source for athletic performance and body composition is lacking, perhaps due to less funding opportunities relative to funding for dairy. Egg protein may be particularly important for athletes, as this protein source has been demonstrated to significantly increase protein synthesis of both skeletal muscle and plasma proteins after resistance exercise at both 20 and 40 g doses. Leucine oxidation rates were found to increase following the 40 g dose, suggesting that this amount exceeds an optimal dose [31]. In addition to providing a cost effective, high-quality source of protein rich in leucine (0.5 g of leucine per serving), eggs have also been identified as a functional food [177]. Functional foods are defined as foods that, by the presence of physiologically active components, provide a health benefit beyond basic nutrition [178]. According to the Academy of Nutrition and Dietetics, functional foods should be consumed as part of a varied diet on a regular basis, at effective levels [179]. Thus, it is essential that athletes select foods that meet protein requirements and also optimize health and prevent decrements in immune function following intense training. Important nutrients provided by eggs include riboflavin (15% RDA), selenium (17% RDA) and vitamin K (31% RDA) [177]. Eggs are also rich in choline, a nutrient which may have positive effects on cognitive function [180]. Moreover, eggs provide an excellent source of the carotenoid-based antioxidants lutein and zeaxanthin [181]. Also, eggs can be prepared with most meal choices, whether at breakfast, lunch, or dinner. Such positive properties increase the probability of the athletes adhering to a diet rich in egg protein.
Research has shown that significant differences in skeletal muscle mass and body composition between older men who resistance train and either consume meat-based or lactoovovegetarian diet [147]. Over a 12-week period, whole-body density, fat-free mass, and whole-body muscle mass (as measured by urinary creatinine excretion) increased in the meat-sourced diet group but decreased in the lactoovovegetarian diet group. These results indicate that not only do meat-based diets increase fat-free mass, but also they may specifically increase muscle mass, thus supporting the many benefits of meat-based diets. A diet high in meat protein in older adults may provide an important resource in reducing the risk of sarcopenia.
In a more appropriate comparison, Morifuji et al. [205] investigated the effects of 12.5 g of either hydrolyzed or non-hydrolyzed soy and whey proteins on changes in plasma levels of the EAAs, BCAAs, and insulin. Results indicated that protein hydrolysates produced greater responses than their non-hydrolyzed counterpart in plasma for each of the variables (Hydrolyzed whey > Non-hydrolyzed whey > hydrolyzed soy > Non-hydrolyzed soy). However, Calbet et al. [202] found that 36 g of hydrolyzed or non-hydrolyzed whey and casein led to no differences in the plasma amino acid/BCAA responses in the whey groups. The hydrolyzed casein, however, did result in a greater amino acid response than the nonhydrolyzed casein. Finally, both hydrolyzed groups resulted in greater gastric secretions, as well as greater plasma increases, in glucose-dependent insulinotropic polypeptides [208]. 2b1af7f3a8